Material Multiplication Factor (F)

Material Description	Multiplier (F)	Material Description	Multiplier (F)
Aluminium - Soft Sheet	0.30	Steel – Mila	1.00
Aluminium – Half Hara	0.38	Steel – ASTM-A36	1.20
Aluminium – Hara	0.50	Steel – 50 Carbon	1.40
Brass – Soft Sheet	0.60	Steel – Cold Drawn	1.20
Brass – Half Hard	0.70	Steel – Stainless	1.40
Copper – Rolled	0.57	Spring Steel (Tempered)	4.00

Based on Mild Steel Shear Strength of 50,000 P.S.I (345 MPa)

Total Cutting Edge

In order to calculate the tonnage required to cut out a shape, it is necessary to work out the total length of the cutting edge, ("L").

le. The perimeter of the shape to be cut.

Example:

Tonnage Calculation

The tonnage required for punching any shape hole in a material is given by the following formula:

Required Tonnage = L x G x S where:-

"L" is the total length of the cutting edge

"G" is the material thickness

"S" is the shear strength of the material Hence required tonnage.

Example 1: For a 50.mm square in 2.mm mild steel $L = 50 \times 4 = 200 \text{ G} = 2 \text{ \& S} = 0.345$

Hence required tonnage.

 $T = 200 \times 2 \times 0.345 = 137.95 \text{ KN}$

Punches with Shear

The tonnage required for punching with shear is given by the formula:- $T = L \times G \times S \times F$

Where "F" is the shear factor (see 'Calculating the effect of shear')

Example 2: For a 3/8" x 3" Slitting Tool with 3/16" Shear Cutting 1/4" Hard Aluminium

F = 0.63 (from graph below)

 $L = 2(3/8 \times 3) = 2.25$ G = 0.25 S = 12 F = 0.63

Hence required tonnage:

 $T = 2.25 \times 0.25 \times 12 \times 0.63 = 4.25 \text{ ton}$

